

Players and Partners

Michael W. Binford

Department of Geography
Overall Coordination, Remote
Sensing/Land-cover
Classification, Carbon
Estimates

Henry L. Gholz

School of Forest Resources and Conservation Ecosystem Process Measurements, Carbon Estimates (Currently NSF LTER Program Director)

Grenville Barnes

Geomatics
Program
Land
Ownership/Land
Tenure

Ameriflux Network Forest Canopy

Scot E.Smith

Geomatics Program
Remote Sensing,
Algorithm
Development

Christine Leslie

Geomatics Program Graduate Student

Not shown: Rob Britts, Geography Department, Graduate Student

Objectives of the Study

- (1) to determine the links between changes in land ownership, land management, land cover change, and carbon storage patterns within the southeastern lower coastal plain region of the United States;
- (2) to determine the effects of specific land ownership patterns on the carbon storage and sequestration rates of representative regional ecosystems at already established long-term intensive research sites; and
- (3) to establish the study area as a site for long-term monitoring of carbon storage patterns.

Science Implications

- Regionalizing point measurements scaling from towers to landscapes (bottom-up not top-down).
- Measuring human activity as a factor driving land-cover/land-use change ("disturbance").
- Developing empirical models of biomass/carbon in land cover classes in a large physiographic region (~ecoregion).
- Developing estimates of C storage change based on extensive and intensive measurements of biomass and carbon exchange in several major land-cover classes.

Figure 1. Conceptual Model Of Land-Cover and Land-Use Change in the Southeastern U.S.

Study Area

Figure 2. Physiographic provinces of the southeastern U.S.

Study Area

- Lower coastal plain, historically longleaf pine flatwoods with frequent fire.
- Soils primarily sands low nutrients.
- Major landowners are forest industries and non-industrial private landowners, many of whom lease forests to industries.
- Major land use is plantation loblolly or slash pine forests (~agriculture).
- Fire suppression fire frequency has decreased, intensity increased.
- C accumulates in litter fires rapid, intense, and destructive.
- Highly dynamic landscape in space and time.
- High spatial variability; flat, but minor elevation changes = desert to wetland.
- Highly dynamic temporally
 - Harvest cycles; 25-yr recently changed to 20-yr in some cases.
 - Climate, moist but inter-annual variability quite high multi-year droughts.
 - Fires

Study Area - Forests

Figure 2. Landsat TM imagery from 27 March 1997. A. "True-color" image using bands 3, 2, and 1 for red, green, and blue. B. Interprete results of an unsupervised land-cover classification.

Study Area - Fire

Prescribed burning in slash pine plantation – rare management practice.

Accidental fire in cypress wetland

Study Area – Other

Phosphate mining in Hamilton County

Heritage for the research

- Ecosystem studies in SE U.S. since '50's
 - H.T. Odum
 - Brown, Lugo, et al.
- Forest ecological productivity with remote sensing approaches in study area since 1979
 - Gholz
 - Curran
 - et al.

Plantation Pine Biomass Accumulation

COMPONENT ORGANIC MATTER POOLS ALONG THE FL CHRONOSEQUENCE (after Gholz and Fisher 1982)

Plantation Pine and Cypress Productivity

Environmental Factors

Pine

Cypress

Clark et al. 1999

Allometry

Biomass and Carbon

ECOSYSTEM CARBON CONTENT (vegetation + soil + litter) in the Florida slash pine chronosequence (Gholz and Fisher 1982)

TABLE 4. Mean bulk density, organic matter, and phosphorus content (P) of top 20 cm of soil."

	Bulk density -	Organ	nic matter	Total P						
Study site	(g/cm²)	(%)	(kg/m²)†	(mg/kg dry soil)	(g P·m ⁻²)†					
Domes										
Natural										
Small Dome 1	0.51	8	6.40	135	10.5					
Small Dome 2	0.42	13	10.7	218	17.1					
Bermed Dome	0.18	49	11.4	395	8.6					
Large Dome‡	0.29	5	9	302	17.5					
Nutrient enriched										
Pasture Dome	0.58	18	13.6	1095	113.8					
Sewage Dome	0.58 0.20	5	5	549	22.0					
Floodplain forest	0.68	8	10.0	379	46.6					
Scrub cypress	1.28	<1	0.0	0.9	0.23					

Cypress
Wetland
Ecosystems

Table 8. Aboveground biomass of the tree stratum (≥2.5 cm dbh) in Florida cypress forests.

Study site Small Dome 1	I	.eaves (g/m²)		Total biomass (kg/m²)								
	Cypress (% of total)	Other species	Cypress (% of total)	Other species	Total							
	245 (71)	100	345	16.4 (80)	4.2	20.6						
Small Dome 2	267 (63)	159	426	17.2 (74)	5.9	23.1						
Bermed Dome	319 (64)	184	502	18.0 (77)	5.4	23.5						
Large Dome	265 (57)	200	465	21.4 (80)	5.2	26.6						
Pasture Dome	118 (44)	151	269*	5.4 (44)	6.8	12.2						
Sewage Dome	472 (85)	81	553*	17.3 (80)	4.4	21.7						
Floodplain forest	338 (51)	325	663*	22.8 (80)	5.6	28.4						
Scrub cypress	132 (88)	18	150	3.4 (94)	0.2	3.6						

^{*} Estimated from the regression equation of optical density and estimated leaf biomass (see text).

^{*} Mean of three samples per site.

[†] Organic matter and phosphorus content were calculated as the means of the three individual samples per site.

[‡] From Deghi 1977.

[§] Not sampled.

AmeriFlux and FluxNet

Methods

- The three objectives will be addressed by:
- 1. Determining changes in land-cover and land-use patterns in the lower Coastal Plain region from 1975 2000.
 - Analyses of archived and contemporary satellite remote sensing data in 4 sample areas (~15 by 15 km each) within a single Landsat Thematic Mapper or Multi-Spectral Scanner (TM/MSS) scene from north-central Florida and southeastern Georgia (WRS 2 Path 17, Row 39), using 2-6 scenes per year (or every other year if data budget is insufficient) for the past 25 years.
- 2. Determining changes in land ownership/tenure and management practices across the same sample areas over the past 25 years, and linking the human activities with observed land-cover changes via empirical quantitative models.
 - Analysis of parcel records from archives maintained by county tax assessors offices.
 - Interviews with land-owner representatives, inspection of some corporate records.

Methods

- 3. Determining changes in the regional C storage over the past 25 years
 - Estimating changes in C stored in tree, understory, leaf litter, and soil biomass over time resulting from land use changes in the sample areas, based on a synthesis of previous studies, existing data, and ongoing studies on carbon storage in regionally representative ecosystems.
 - Look-up tables, vegetation index calibration, LAI estimation, ANN approaches.
- 4. Determining the effects of environmental conditions (e.g. climate), wildfire and prescribed fire, and logging on ecosystem carbon storage, and C sequestration rates within regionally representative ecosystems
 - Measurements at existing long-term carbon dynamics research sites and archival weather and fire (state Department of Forestry) data, and landcover change analysis of Landsat MSS and TM data.

Land-Cover Classification Hybrid – Unsupervised/Supervised

Vegetation Indices and Other Parametric (Continuous Field) Approaches

Also: LAI by Jensen 2000 method

Random Points and Final Study Areas

- 1. Within one county.
- 2. Boundaries modified to conform to land boundary system.

Study Areas and the Land Boundary System.

Study Areas and the Land Boundary System

Hamilton County

Study Areas and the Land Boundary System

Union County

Methods and Data Plan

- Landsat data coincident with phenologically critical times.
- Land-ownership methods
- Satellite data processing

Phenology and Available Landsat Data

CRITICAL DATES FOR IMAGERY										
1 - End of Litterfall	1/1-1/15									
2 - Min LAI	3/1-3/15									
3 - LAI Expansion	6/10-6/30									
4 - Max LAI	8/25-9/10									

Phenology and Available Landsat Data

- 74 sufficiently cloud-free scenes available over the 25 years of the study period.
 - 2 ETM+ as of August 2000, still looking.
 - 49 TM
 - 23 MSS, some overlap with TM
- Only 2 or so years have complete phenological coverage
 - 1984 and 1986, maybe 1991. Drought years.
- Fall/Winter/Spring scenes are common, summer scenes are rare.
 - Inter-annual comparisons possible; major LCLUC objectives met.
 - Intra-annual variation will be difficult.

Land Tenure/Ownership Patterns

Objectives:

- Document changes in parcel size & ownership type between 1975-2000
- Analyze how this has affected LULC and carbon sequestration

Issues/Questions:

- Space scale (parcel, section or township)
- Time scale (per change, annual, 5 year, 25 years)
- Link between land tenure and management practices
- Trends and impacts on carbon
- Urban parcels

American forests have come to represent...the material and symbols society wields in its debates over nature, the environment, natural resources, and property (Heasley & Guries 1998)

Property Boundaries and Information

Attributes of Alchcad12000.shp

Satt

Π

Township Range Citycode

Schedule

				Vr 2	2000									Yr 2	กก1							۷r '	2002											Vr :	2003	
A - 41 14	May Jun Jul Aug Se						ı	_	. 1	1					-		_		т	Τ_	· ·							-	_			_				_
Activity	мау	Jun	Jui	Aug	Sep	Oct	NOV	Dec	Jan	reb	war	Apr	мау	Jun	Jul	Aug	Sep	Oct	NOV	Dec	Jan	reb	war	Apr	мау	Jun	Jul	Aug	Sep	Oct	NOV	Dec	Jan	reb	Mar	Apı
I. Land-Use Change																																				
acquire imagery																																				
pre-processing																																				
Data Analysis																																				
Fieldwork																																				_
II. Land Ownership																																			\vdash	
site selection																																				
research digital records																																				
research public records																																				
Data Organization								П																												
Longitudinal Analysis																																				
Integrate with LULC																																			П	
Integrate with Carbon data																																				
Follow-up Fieldwork																																				
•				Yr 2	2000									Yr 2	2001	1						Yr 2002												Yr 2	2003	
	Мау	Jun	Jul			Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау			Aug	Sep	Oct	Nov	Dec	Jan	Jan Feb Mar Apr				Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
III. Carbon Dynamics																																				
tower flux measurements																																				
itterfall collections																																				
ree growth measurements																																				
prescribed fire experiment																																				
oiomass data synthesis																																				_
IV. Integrative Activities																																				—
report writing																																				
papers																																				
web site																																				

The End, or is more C actually sequestered in these systems?

New Land-Use/Environmental Change Institute (LUECI) at UF

- Multiple departments/colleges.
- LCLUC/LUCC agenda is part of basic perspective.
- Adds climate-change time scale (decades to millennia).
- Support from highest administration (\$\$).
- As many as 6 new appointments over next few years watch for advertisements.